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1. Introduction 

The service concept has acquired an increasing level of 
recognition by protocol designers (see e.g. [ViLo 853). 
This architectural concept influences the methodology 
applied to service and protocol definition. Since the 
protocol can be seen as the logical implementation of the 
service, one may ask the question whether it is possible to 
formally derive the specification of a protocol providing a 
given service. 

An architectural model for both service and protocol 
specification is depicted in Figure 1. A service is realized 
by a service provider which - according to the principle of 
abstraction - is seen as a black box, and made available 
through, a certain number of Service access points (SAPS, 
see Figure l(a)), in the following also called “places”. In 
the more detailed view of the protocol specification, some 
internal structure is given to the black box: several 
protocol entities linked by an underlying transmission 
medium may cooperate to provide the service (Figure l(b)). 
We assume the communication medium to be reliable, to 
maintain the sending sequence of messages and to be 
connected to each entity by FIFO-queues for transmissions 
and receptions. 

Service 

Figure l(a): Service architecture 
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Based on this architectural model, we can phrase the above 
question in more precise terms as follows: Given a service 
specification es (see Figure 2(a)), is it possible to formally 
derive the specifications Ti(es) for all protocol entities (see 
Figure 2(b)) ? 

es 

Figure 2(a): Service specification 

1 2 . . . n 

I 1 

Figure 2(b): Derived protocol specification 

In the area of communication protocols, analysis 
techniques have been developed and applied to detect design 
errors like deadlocks, unspecified receptions, non executable 
interactions, state ambiguities and non-conformance with 
the service specification. The best-known approach here 
seems to be reachability analysis, usually based on the 
specification of protocol entities as finite state automata 
(see for instance [Both 87~1). Because the analysis of a 
sufficiently complex protocol specification usually reveals 
some of the above design errors, the specification has to be 
revised and the analysis to be repeated until no more errors 
are found. 

With protocol synthesis one wants to avoid errors a priori. 
Existing approaches (see e.g. [Zafi 803, [MeBo 831, [GoYu 
841, [Rama 851 and [Rama 863) take partly specified 
protocol entities or complete specifications of some 
protocol entities as a starting-point for the synthesis 
procedure. The synthesis procedure is based on the duality 
inherent in message exchange: For each message sent by a 

protocol entity, there must be a protocol entity prepared to 
receive it. However, several important limitations apply to 
each of these approaches: 

- With the exception of [MeBo 831, the service 
specification is not taken into account. There is no 
formal requirement on which the synthesis is based, 
instead it starts with part of the solution which has to 
be provided in advance. It is clear that - without a 
formal service definition - conformance with the 
service is not guaranteed by the synthesis algorithm 
and has to be shown in a separate step. 

- Again with the exception of [MeBo 831, only two- 
party protocols are considered. It seems to be difficult 
to extend the approaches to an arbitrary number of 
protocol entities. Thus they are not well-suited for 
high-level protocols involving more than two parties. 

- [Zali 803, [GoYu 841 and [Rama 851 all assume the 
existence of a reliable communication medium. The 
latter, however, is extended in [Rama 86) to cover 
noisy channels. 

- None of the above approaches takes parameters into 
account. Only a distinction between different message 
types is possible. 

- [Zafi 801 and [MeBo 831 do not avoid deadlocks by 
construction. 

- All approaches assume the existence of 
(incomplete) protocol specifications. None is based 
solely on the service defmition. 

- [Zafi 801 and [MeBo 831 are quite expensive with 
respect to computation. 

Our approach, introduced in [Both 86g] and extended in 
[Gotz 891, is more general in that only the existence of the 
service specification (see Figure 2(a)) is required. It can 
handle an arbitrary number of protocol entities. 
Furthermore, input and output parameters are taken into 
account. Subsystem failures and unreliable channels, 
however, are not taken into account. A similar approach 
was also taken in [Chu 88a] in the context of finite state 
two party protocols and extended to operate in the presence 
of message loss [Chu 88b]. 

In our approach to the derivation of a protocol specification 
from a given service specification, an assignment of the 
service interactions to the different service access points 
must be given; the derivation algorithm then provides 
specifications of all protocol entities serving the different 
access points. The algorithm has been implemented in 
Prolog together with translations between a subset of the 
Lotos specification language [Bolo 871 and our service 
specification language Den 891. 
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However, this derivation method has also some 
limitations. One is the assumption of a reliable 
communication medium. The other is a certain restriction 
on the power of the language used for the specification of 
service specifications. Only finite behaviors have been 
considered so far. The language of [Both 86g] and [Gotz 
891 only includes the operators “;” for sequential execution, 
“0” for alternatives, and “111” for independent parallelism. 

This paper presents several new results which represent 
important improvements to the above protocol derivation 
approach. First of all, the language restriction to finite 
behaviors is removed by allowing for the definition of 
procedures which can be called recursively. Secondly, a new 
derivation algorithm has been developed which is much 
simpler than the one presented in [Both 86g]. Third, the 
resulting protocol specifications are much more optimized 
than those obtained previously. Section 2 presents the new 
derivation algorithms, including recursive definitions, 
which is much easier to understand than the algorithm 
described in [Both 86gj and [Gotz 891. The optimization of 
the protocol specifications is discussed in Section 3. 
Section 4 contains the conclusions. 

2. The derivation algorithm 

2.1. Specification language 

The protocol derivation algorithm is defined in terms of the 
language constructs that can be used to write a service 
specification which is the starting point for the derivation 
of the protocol. For the discussion in this paper, we adopt 
the specification language defined by the following syntax 
rules: 

(1) Service-Def + Proc-Def 
(2) Proc-Def + PROC h-Id = e END 

Proc-Defl 
(3) Proc-Def + PROC Proc-Id = e END 

(4) e 4 Proc-Id 

(5) e + Event-Id 

(9 e + el ; e2 

(7> e + el Ill e2 

(8) e + ei II e2 
(9) e + (ei) 

(* el = e2 = e and Proc-Defl = Proc-Def *) 

As in Lotos[Bolo 873 for a behavior expressions, operator 
priorities are given as follow, in decreasing order : “;” , “Ill” 
and “[I”. Parentheses may be used (rule (9): e + (el) ) to 
enforce different priorities, or stress the predefined ones. 
“PROC” and “END” are keywords. 

The event identifiers (rule (5) e + Event-Id) are of the 
form “IdentifierP1acet’ where “Identifier” represents a 
primitive service interaction with the user of the service at 
a given service access point, and “Place” characterizes that 
service access point. In the following we use “Places” in 
the form of integer numbers and single characters to 
represent the interactions. For example, the event a2 
represents the service interaction “a” at the service access 
point “2”. 

Compared to [Gotz 891, the definition of several procedures 
(rules (1) through (3)) as well as the statement calling the 
execution of a procedure (rule (4)) are the extensions which 
make it possible to define infinite behaviors, such as the 
following example: 

Example 1: 

Service specification : 
PROC A = ( a1 Ill b2 Ill c3 ) : B END 
PROC B = ( e3 Ill ( c3 [] d3 ) ) ; A END 

The service is defined by the behavior of the first procedure, 
procedure “A” in this example. The behavior of these 
procedures is described below : 

PrdureA: 
The interaction primitives al, b2 and c3 are executed 
independently (with interleaving) at the places 1,2 and 3, 
respectively. When the execution of these primitives is 
finished, the behavior is as specified for procedure B. 

ProcedureB: 
First, the interaction primitive e3 is executed at place 3 in 
interleaving with the primitive c3 or d3 (the choice 
between the interaction primitives c3 and d3 is done at 
place 3). Then the behavior is as specified for procedure A. 

At the abstraction level of the service specification, only 
the interactions with the service user are defined. At the 
more detailed level of protocol specifications, in addition 
the exchange of messages between the protocol entities 
must be specified. These messages serve for 
synchronization in order to ensure the correct ordering of 
the service interactions, as well as for the transfer of 
information about interaction parameters which are 
exchanged with the users of the service. The purpose of the 
protocol derivation algorithm is to determine the order of 
message exchanges and service interactions to be executed 
by each of the protocol entities. This paper concentrates on 
the synchronization messages; issues related to interaction 
parameters and required messages are discussed in detail in 
[Gotz 891. 

The resulting protocol specifications are written in the 
same language as the service specification, except that 
addition primitives for the exchange of protocol messages 

138 



are introduced. We write “sj(m)” for the sending of a 
synchronization message m to the protocol entity at place 
j. If this statement is executed by the protocol entity at 
place i, then the protocol entity at place j may later execute 
the statement “ri(m)“, which represents the reception of the 
message m from the entity at place i. 

The following restrictions are imposed on the form of 
service specifications, in order to simplify the protocol 
derivation. For each subcxpression of the form “el [] e2”, 
contained in the service specification, the following 
conditions must be satisfied: 

Rl: All starting interactions of el and all starting 
interactions of e2 must be associated with the same place. 

R2: The set of ending interaction places of el and the set 
of ending interaction places of e2 must be equal, unless one 
of these is empty. 

Restriction Rl was already introduced in [Both 86g]. It 
simplifies the implementation of the decision which 
alternative should be selected. Instead of using a distributed 
algorithm for this selection (e.g. [Rana 83 I), the choice can 
be made locally by the protocol entity at the place where 
the alternatives start. Restriction R2 is the basis for the 
simplification of the derivation algorithm (see below). 

The restrictions Rl and R2 can be eliminated from the 
specification language by introducing a preliminary step in 
the protocol derivation process. During this step, a 
“starting” and “ending” places are selected for each 
subexpression of the form “eI [] g”, and some dummy 
interactions at these places are added at the beginning and 
end of each of the alternatives, if the existing interactions 
are not associated with the right places. 

2.2. The basis for the simplification of the 
algorithm 

The basic idea of the protocol derivation algorithm [Both 
86g] is the observation that the exchange of 
synchronization messages is only required for the 
sequencing operator “;“. In fact, the subexpressions eI and 
e2 of an expression “eI ; e2” may involve service 
interactions at different places. It is important that the 
interactions belonging to e2 do not start before all 
interactions belonging to eI have been executed. This 
synchronization can be obtained by sending 
synchronization messages from the places where 
interactions of el are executed to those places where 
interactions of e2 are to be executed. In the case of the 
operator “el III e2” the subexpressions el and e2 arc 
executed in parallel and independently from one another; no 
synchronization is required. 

In order to determine which synchronization messages must 
he exchanged for an expression “eI ; e2”, it is necessary to 
know the places where the last interactions of eI are 
executed, and where the first interactions of e2 are executed. 
For each subexpression e in the service specification, we 
call these sets EP(e), the set of ending places, and SP(e), 
the set of starting places of the subexpression. As shown 
in Figure 3, these sets can be associated as attributes with 
the nodes of the syntax tree of a given service specification. 
As the figure suggests, synchronization messages must be 
sent from all places of EP(e1) to all places of SP(e2). 

In the case of service specifications satisfying the 
restrictions Rl and R2, the sets EP and SP may contain 
more than one place only when the parallel operator “Ill” is 
involved in the expression. The set SP for an alternate 
expression of the form “el [J g” contain only a single 
place, due to restriction Rl, while the set EP may contain 
more than one place if the operator “III” is involved. With 
the restriction R2, no distinction must be made whether 
several places in that set are due to parallelism or 
alternatives. This distinction makes the protocol derivation 
algorithm described in [Both 86g] and [Gotz 891 much 
more complicated than the one presented here. 

Another difference of the derivation algorithm leads to more 
optimized protocol specifications. While the earlier 
algorithm foresees synchronization messages sent between 
the “ending events of el” and the “starting events of e2” for 
each sequential subexpression of the form “el ; e2”. the 
here described algorithm foresees synchronization messages 
at a higher level in the syntax tree, passed directly between 
“subcxprcssion eI” and “subexpression e2” (see Figure 3). 
This is possible because of restriction R2 above. As shown 
in Section 3, this can lead to an important reduction of the 
number of exchanged messages. 

II 8 
I I ’ 81’ 

, . . 
Figure 3 

2.3. Attributes evaluation 

The first phase of the protocol derivation algorithm is the 
evaluation of attributes defined on the derivation tree of the 
given service specification. The following attributes are 
associated with each expression node e in the syntax tree: 
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SP(e): the set of “starting places” as described above. 

EP(e): the set of “ending places” as described above. 

P(e): either NIL or a pair < PP, N > where PP is the set of 
“preceding” places, that is, the set of “ending places” EP of 
the subexpression “preceding” the expression e; and N is 
the number of the expression node which directly precedes 
the I’;” operator in the service expression. This number is 
included in the synchronization messages and permits the 
receiving protocol entity to determine to which alternative 
a received message belongs [Both 86g]. 

FP(e): the set of ‘following places”, similar to the 
“preceding places” PP of the P attribute above. 

The rules for evaluating the attributes of a node in the 
syntax tree depend on the syntactic rule applied at that 
node, as defined in the Table 1. The evaluation of the 
attributes can be considered in two phases. In the first 
phase, the attributes SP and EP are evaluated from to 
bottom towards the top of the tree (so-called synthesized 
attributes). For the leaf nodes generated by the rule (5) 
(e + Event-Id) the attributes SP and EP are both set to the 
value (place(Event-Id)) . Here “place” is a function from the 
set of events to the set of places: place(IdentifierP) = p. In 
the second phase, the attributes P and FP are first set, 
respectively, to NIL and () at the root of each subtree 
corresponding to a behavior expression of a procedure (see 
rules (2) and (3)), then evaluated from the top down (so- 
called inherited attributes) for the intermediate nodes, using 
the values for SP and EP obtained during the first phase 
(= de (6)). 

Prndurtinn rules - _ ----_---- - -_-- 
(1) service-Def * Proc-Def 
(2) Pmc-Def -+ PROC Proc-Id = e END Proc-Defl 

g 
Proc-Def + PROC Proc-Id = e END 

e + I&-Id 

8 
e 3 Event-Id 
e + el;e2 

2 
e 3 el III e2 
e + ei [I e2 

(9) e + (W 
SP EP 

g 
SP(Proc-Id) := SP(e) EP(Proc-Id) := EP(e) 
SP(Proc-Id) := SP(e) EP(Proc-Id) := EP(e) 

(4 SP(e) := SP(Proc-Id) EP(e) := EP(Proc-Id) 
0 SP(e) := SP(Event-Id) EP(e) := EP(Event-Id) 

(6) We) := SP(e1) We) := EP(e2) 

$ 
SP(e) := SP(e1) u SP(e2) EP(e) := EP(eI) u EP(e2) 
SP(e) := SP(e1) = SP(e2) EP(e) := EP(e1) u EP(e2) 

(9) SP(e) := SP(e1) EP(e) := EP(e1) 
P FP 

(2) P(e) := NIL FP(e) := () 
(3) P(e) := NIL IF(e) := (1 
(4) P(Proc-Id) := NIL FP(Proc-Id) := ( ) 
0 P(Event-Id) := NIL FP(Event-Id) := ( ) 

(6) Wx) := NIL FP(ei) := SP(e2) 
P(e2) := <EP(el), N(el)> FP(e2) := {} 

: 
P(e1) = P(e2) := NIL FP(el) = FP(ez) := ( ) 
P(e1) = P(e2) := NIL FP(el) = FP(e2) := ( ) 

(91 P(e1) := NIL Fp(ei) := 0 

Table 1: Evaluation rules for the attributes SP, EP, P, FP 

140 



The above attribute evaluation rules are similar to those of 
[Both 86g], however, the following differences can be 
noted. The attributes above are essentially sets of places 
with a straightforward meaning, while the attributes in 
[Both 86g] represent statements for the sending and 
receiving of synchronization messages and which must 
satisfy certain syntactic properties. Effective values for the 
attributes P and FP are only used in relation with the 
sequential composition operator. The most important 
difference is the presence of recursive procedure calls which 
requires an iterative solution to the evaluation of the 
attributes during the first phase. 

The attributes SP and EP of a leaf node corresponding to a 
procedure call (generated by rule (4)) can be considered 
variables. We equate the values of these attributes for a call 
of a particular procedure A with the attributes obtained for 
the node representing the definition of this procedure A, 
that is, the root of the subtree starting with the expression 
e generated by rule (2) or (3) with the value of Proc-Id 
equal to A. Therefore, the evaluation rules for SP applied 
to a given procedure subtree, give rise to an equation 
defining SP for that procedure in terms of constant places 
corresponding to the explicit events defined in that 
procedure, and in terms of variables representing the SP 
values of those procedures which are called; and similarly 
for EP. These equations, which are recursive in general, can 
be solved by applying the rule that the equation SP(A) := 
SP(A) u X implies the equation SP(A):=X, where SP(A) is 
the value of the SP attribute for procedure identified by A. 

Another way of solving the recursive equations is by 
iteration. The bottom-up attribute evaluation pass over the 
procedure subtrees is performed several times, each 
representing a step of the iteration, For the first step, the 
values of the SP and EP attributes of the procedure call leaf 
nodes are set to the empty set. In each subsequent step, the 
values of these attributes are set equal to the corresponding 
values obtained at the procedure root nodes in the previous 
step. The iteration terminates when the attribute values of 
all procedure root nodes have not changed during the last 
step. 

Based on the attributes SP and EP, we can now formally 
define the restrictions Rl and R2 for the rule (8) 
(e -3 el [I e2 1 : 

Rl : SP(e1) = SP(e2) = (p} , where p is an arbitrary place 
R2 : EP(e1) = EP(e2) or (EP(e1) = () or EP(e2) = ( ) ) 

For Example 1 described in section 2.1, the behavior of 
each procedure is described by a syntax subtree as is shown 
Figure 4. The application of the rules described in Table 1 
leads to the values shown in the figure. Some of the 
attributes involve the variables SP(A), SP(B). EP(A) and 
EP(B). In order to determine these variables, we proceed as 
follows. The evaluation rule for SP at the root node of the 
A subtree reads SP(A) := SP(e) and by inspecting this 

subtree we see that SP(e) is equal to ( 1, 2, 3). Therefore 
SP(A) = (1, 2, 3). Similarly, we get EP(A) := EP(B), 
SP(B) = (3) and EP(l3) := EP(A). Finally, this leads to the 
equation El?(A) := EP(A). which can be written 
EP(A) := EP(A) u ( ), and therefore we set EP(A) = ( ). 

These are obviously the values we were expecting, because 
the two procedures A and B do not terminate. 

PROC A = 
(1,2,3) NIL 

END 
e 

EP(B) 1 0 

SP(B) NlL 

B 

EP(B) 11 I) 

Figure 4(a): Syntactic tree of the procedure A 

NIL 
PROC B = 

(3) END 
e 

ENA) 12 0 

I3) NJL SWA) <(3),13> 

e1 e2 

(3) 13 SP(A) EP(A) 21 (1 

‘11, 
‘I,( I I. I 

I 
I 
Sf’(A) NIL 

Figure 4(b): Syntactic tree of the procedure B 
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2.4. Protocol derivation 

Once the attributes are evaluated, they are used to derive the 
specifications of the protocol entities as follows. For each 
service access point, identified by the place p, the 
specification of the protocol entity at that place is obtained 
by applying the function Tp, defined in Table 2, to the root 
node of the service specification. The result is a character 
string in the form of a specification containing a set of 
procedures with the same identifies as in the original 
service specification, however, the definition of their bodies 
is changed. Only the service interactions occurring at the 
place for which the protocol entity is derived will be 
included in the protocol specification (see rule (5)). and 
additional statements for the sending and receiving 
synchronization messages will be included (see rule (6)). 
The string “empty” represents no action and can be 
eliminated using the rules described in [Both 86g]. 

The functions trans and ret are used to obtain statements 
for the sending and receiving of synchronization messages 
from the set of “following” and “preceding” places, 
respectively. They are defined as follows: 

ret ( NIL ) = “empty” 
ret (<(i, j, . . . . k), N>) = “( ri(N) III rj(N> Ill . . . Ill Q(N) >” 

tram (( } , N) = “empty” 
tram ( (i, j, . . . . k], N ) = “( Si(N) Ill Sj(N) Ill . . . Ill Sk(N) )” 

Prnflrirtinn rrrlm - - ..III--uy -w-v.. 
Service-Def + F%uc-Def 

Proc-Def + PROC Proc-Id = e END Proc-Defl 
Proc-Def + PROC Proc-Id = e END 

e + Pmc-Id 
e -3 Event-Id 
e + ei ; e;! 
e + el Ill e2 
e * el II e2 
e + (4 

Function Tp 
Tp(Service-Def) := Tp(Proc-Def) 

Tp(Proc-Def) := “PROC” Proc-Id “=” Tp(e) “END” Tp(Proc-Defl) 

Tp(Proc-Def) := “PROC” Proc-Id ‘I=” Tp(e) “END” 

Tp(e) := Proc-Id 

Tp(e) := if place(Event-Id) = p then Event-Id else “empty” 

(6) ‘Me) := Tph) “;” if p E EP(e1) then trans(FP(el),N(el)) else “empty” 

“:” if p E SP(e2) then rec(P(e2)) else “empty” “;” Tp(e2) 

Tp(e) := Tp(eI) “III” Tp(g) 

Tp(e) := TpW “0” TPW 

Tp(e) := ‘I(,, Tp(e1) “)” 

Table 2: Definition of the function Tp 
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Consider again Example 1 with the service specification: 

PROC A = ( a1 III b2 Ill ~3 ) ; B END 
PROC B = ( e3 Ill ( c3 [I d3 ) ) ; A END 

This derivation algorithm leads to the following protocol 
specification: 

Protocol entity at place 1: 
PROC A = a1 ; s3(2) ; B END 
PROC B = r3(13) ; A END 

Protocol entity at place 2: 
PROC A = b2 ; ~(2) ; B END 
PROC B = r3(13) ; A END 

Protocol entity at place 3: 
PROC A = c3 ; ~$2) - 

B 
i&W) 111 r2(2) 111 a(2) 1 ; 

PROC B = ( e3 Ill ( c3 [I d3 ) ) ; 

3. Optimizations 

Different kinds of optimizations lead to different protocol 
designs depending on the performance objective to be 
optimized. In the context of the here described protocols, 
the following two objectives may be considered, as 
illustrated in the example Bellow: 

(1) Minimization of the number of synchronization 
messages required for a typical execution of the service 
specification. In fact, different executions should be 
considered if the service specification allows for alternative 
choices. 

(2) Minimization of the maximal number of 
synchronization messages transmitted in a sequential order 
during a typical execution of the service specification. 

The first objective minimizes the message transmission 
“overhead”, while the second minimizes the overall delay 
required for the execution of the service, assuming that the 
delay is solely due to message transmission, and the delays 
of all message transmissions are the same. In the following 
we only consider the first optimization objective. 

3.1. Elimination of loopback messages 

Let consider the derived protocol specification for Example 
1, in particular the protocol entity for the place 3 above. 
One sees that the protocol specification includes 

synchronization messages sent by the entity at place 3 to 
itself. Clearly, such messages should be eliminated, since 
they do not provide any synchronization function. (Note 
that the sequencing relation is locally enforced by the “;” 
operator which is included in the specification of the 
entity). 

This optimization is obtained by eliminating the place p of 
the entity to be generated, from the sets of places used for 
the generation of sending and receiving statements. More 
precisely, the expressions “ret (P(e2))” and “trans(FP(el), 
N(e1))” in Table 2 (rule (6)) should be replaced by “ret 
(P’(e2))” and “trans(FP’(eI), N(el))l. respectively, where P 
and FP’ are defined as follows: 

P’(e) = NIL if P(e) = NIL 
P’(e) = c Set - {p) , N > if P(e) = c Set, N > 

In the case of Example 1 above, this modification leads to 
the specification : 

PROC A = c3 ; (q(2) Ill r2(2) ) ; B END 

PROC B = ( e3 Ill ( c3 [I d3 ) ) ; 
( ~103) 111 s2(13) 1 ; 
A END 

for the protocol entity at place 3, which exhibits no useless 
transmissions, while the specifications for the others 
entities are not changed. 

3.2. Other optimizatbns 

As mentioned in Section 2.2, the derivation algorithm 
presented here gives rise to more optimized protocol 
specifications than the previous algorithm [Both 86g]. The 
difference becomes visible for service specifications such as 
the following: 

Example 2: 
PROC A = ( a1 Ill b1 ) : ( c2 Ill d2 ) END 

The algorithm of [Both 86g] gives rise to four 
synchronization messages, as indicated in Figure 5(a). An 
optimization described in Khen 891 reduces this number to 
two, as shown in Figure 5(b). Note that this optimization 
is also applicable in the case that restriction R2 is not 
satisfied. For the simplified derivation algorithm described 
in this paper (which requires restriction R2) the resulting 
protocol includes only a single synchronization message, 
as indicated in Figure 5(c). As indicated in the figure, the 
message relates the higher nodes of the syntax tree, instead 
of the leaf nodes, as is the case of the earlier algorithm. 
This is the reason for the optimization. 
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Figure 5(c) 

Figure S(a) 
When interaction parameters are taken into account, another 
optimization may be performed [Khen 891. In this case, 
instead of sending a synchronization message and a data 
message together from the place pl to the place ~2, the 
synchronization message may be eliminated and the 
protocol entity at place pl has to send just the data 
message to place ~2. This data message will also serve for 
synchronization. 

4. Conclusions 

This paper considers the automatic derivation of a protocol 
specification from a given service specification. The derived 
protocol automatically satisfies the usual “nice properties”, 
such as absence of deadlocks, unspecified receptions, etc. In 
addition, it provides the service interactions at the different 
service access points in the order specified by the given 
service specification. The necessary synchronization 
messages between the different protocol entities are 
determined automatically. 

Figure 5(b) 

The paper presents a simplified derivation algorithm, which 
is much easier to understand than an earlier one [Both 86g]. 
In addition, it provides protocol specifications which are 
better optimized. Another important different is the 
extension of the algorithm to handle service specifications 
with loops and recursive procedure calls. Together with the 
other operators “;” (sequential execution), “[I” 
(alternatives), and “111” (independent parallelism), this 
allows for a language power similar to Lotos or CCS 
[Miln 801. 
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The inclusion of interaction parameters in the context of 
the earlier derivation algorithm is discussed in [Gotz 891. It 
involves additional messages exchanged between the 
protocol entities for the transmission of interaction 
parameters. The same approach can be used for handling 
interaction parameters in the context of the here described 
derivation algorithm. 

The protocol derivation algorithm assumes that the 
underlying communication is reliable. This assumption is 
usually satisfied for protocols above the level of the OS1 
Transport protocol. We believe that this algorithm could be 
useful for automating the design of application protocols, 
in a context where the service specifications change 
lteqllently. 

For the case that the protocol should be reliable in the case 
of message losses, it is conceivable to use an approach 
where the protocol for the reliable case is systematically 
transformed into a protocol that recovers from message 
loss. We think that it may be possible to adapt the 
approach of [Rama 86] to the here described context. More 
research is still required to work out the details. 
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