
Abstract

NEW RESULTS ON DERIVING PROTOCOL SPECIFICATIONS
FROM SERVICE SPECIFICATIONS+

Ferhat KHENDEK, Gregor von BOCHMANN,
chTistian KANT*

D@artement d’IR0, Universiti de Montreal,
C.P. 6128, Succursale A

Montreal, Quebec, H3C 357, Canada

Previous papers describe an algorithm for deriving a
specification of protocol entities from a given service
specification. A service specification defines a particular
ordering for the execution of service primitives at the
different service access points using operators for
sequential, parallel and alternative executions. The derived
protocol entities ensure the correct ordering by exchanging
appropriate synchronization messages, between one another
through the underlying communication medium.

This paper presents several new results which represent
important improvements to the above protocol derivation
approach. First the language restriction to finite behaviors
is removed by allowing for the definition of procedures
which can be called recursively. Secondly, a new derivation
algorithm has been developed which is much simpler than
the previous one. Third, the resulting protocol
specifications are much more optimized than those obtained
previously.

* Christian Kant is with the UniversitC de Moncton,

+ Partial support from the Natixal Sciences and Engineering
Research Council of Canada, and The Ministry of Education
of QuBbec is gratefully acknowledged.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific pemksion.
0 1989 ACM 089791-332-9/89/0009/0136 $1.50

1. Introduction

The service concept has acquired an increasing level of
recognition by protocol designers (see e.g. [ViLo 853).
This architectural concept influences the methodology
applied to service and protocol definition. Since the
protocol can be seen as the logical implementation of the
service, one may ask the question whether it is possible to
formally derive the specification of a protocol providing a
given service.

An architectural model for both service and protocol
specification is depicted in Figure 1. A service is realized
by a service provider which - according to the principle of
abstraction - is seen as a black box, and made available
through, a certain number of Service access points (SAPS,
see Figure l(a)), in the following also called “places”. In
the more detailed view of the protocol specification, some
internal structure is given to the black box: several
protocol entities linked by an underlying transmission
medium may cooperate to provide the service (Figure l(b)).
We assume the communication medium to be reliable, to
maintain the sending sequence of messages and to be
connected to each entity by FIFO-queues for transmissions
and receptions.

Service

Figure l(a): Service architecture

136

1
7 1 7

entity 1 entity 2 . . . entity n

I 4t communication medium I
-. a... - r‘igure l(D): Yrotocol arcnitecture

Based on this architectural model, we can phrase the above
question in more precise terms as follows: Given a service
specification es (see Figure 2(a)), is it possible to formally
derive the specifications Ti(es) for all protocol entities (see
Figure 2(b)) ?

es

Figure 2(a): Service specification

1 2 . . . n

I 1

Figure 2(b): Derived protocol specification

In the area of communication protocols, analysis
techniques have been developed and applied to detect design
errors like deadlocks, unspecified receptions, non executable
interactions, state ambiguities and non-conformance with
the service specification. The best-known approach here
seems to be reachability analysis, usually based on the
specification of protocol entities as finite state automata
(see for instance [Both 87~1). Because the analysis of a
sufficiently complex protocol specification usually reveals
some of the above design errors, the specification has to be
revised and the analysis to be repeated until no more errors
are found.

With protocol synthesis one wants to avoid errors a priori.
Existing approaches (see e.g. [Zafi 803, [MeBo 831, [GoYu
841, [Rama 851 and [Rama 863) take partly specified
protocol entities or complete specifications of some
protocol entities as a starting-point for the synthesis
procedure. The synthesis procedure is based on the duality
inherent in message exchange: For each message sent by a

protocol entity, there must be a protocol entity prepared to
receive it. However, several important limitations apply to
each of these approaches:

- With the exception of [MeBo 831, the service
specification is not taken into account. There is no
formal requirement on which the synthesis is based,
instead it starts with part of the solution which has to
be provided in advance. It is clear that - without a
formal service definition - conformance with the
service is not guaranteed by the synthesis algorithm
and has to be shown in a separate step.

- Again with the exception of [MeBo 831, only two-
party protocols are considered. It seems to be difficult
to extend the approaches to an arbitrary number of
protocol entities. Thus they are not well-suited for
high-level protocols involving more than two parties.

- [Zali 803, [GoYu 841 and [Rama 851 all assume the
existence of a reliable communication medium. The
latter, however, is extended in [Rama 86) to cover
noisy channels.

- None of the above approaches takes parameters into
account. Only a distinction between different message
types is possible.

- [Zafi 801 and [MeBo 831 do not avoid deadlocks by
construction.

- All approaches assume the existence of
(incomplete) protocol specifications. None is based
solely on the service defmition.

- [Zafi 801 and [MeBo 831 are quite expensive with
respect to computation.

Our approach, introduced in [Both 86g] and extended in
[Gotz 891, is more general in that only the existence of the
service specification (see Figure 2(a)) is required. It can
handle an arbitrary number of protocol entities.
Furthermore, input and output parameters are taken into
account. Subsystem failures and unreliable channels,
however, are not taken into account. A similar approach
was also taken in [Chu 88a] in the context of finite state
two party protocols and extended to operate in the presence
of message loss [Chu 88b].

In our approach to the derivation of a protocol specification
from a given service specification, an assignment of the
service interactions to the different service access points
must be given; the derivation algorithm then provides
specifications of all protocol entities serving the different
access points. The algorithm has been implemented in
Prolog together with translations between a subset of the
Lotos specification language [Bolo 871 and our service
specification language Den 891.

137

However, this derivation method has also some
limitations. One is the assumption of a reliable
communication medium. The other is a certain restriction
on the power of the language used for the specification of
service specifications. Only finite behaviors have been
considered so far. The language of [Both 86g] and [Gotz
891 only includes the operators “;” for sequential execution,
“0” for alternatives, and “111” for independent parallelism.

This paper presents several new results which represent
important improvements to the above protocol derivation
approach. First of all, the language restriction to finite
behaviors is removed by allowing for the definition of
procedures which can be called recursively. Secondly, a new
derivation algorithm has been developed which is much
simpler than the one presented in [Both 86g]. Third, the
resulting protocol specifications are much more optimized
than those obtained previously. Section 2 presents the new
derivation algorithms, including recursive definitions,
which is much easier to understand than the algorithm
described in [Both 86gj and [Gotz 891. The optimization of
the protocol specifications is discussed in Section 3.
Section 4 contains the conclusions.

2. The derivation algorithm

2.1. Specification language

The protocol derivation algorithm is defined in terms of the
language constructs that can be used to write a service
specification which is the starting point for the derivation
of the protocol. For the discussion in this paper, we adopt
the specification language defined by the following syntax
rules:

(1) Service-Def + Proc-Def
(2) Proc-Def + PROC h-Id = e END

Proc-Defl
(3) Proc-Def + PROC Proc-Id = e END

(4) e 4 Proc-Id

(5) e + Event-Id

(9 e + el ; e2

(7> e + el Ill e2

(8) e + ei II e2
(9) e + (ei)

(* el = e2 = e and Proc-Defl = Proc-Def *)

As in Lotos[Bolo 873 for a behavior expressions, operator
priorities are given as follow, in decreasing order : “;” , “Ill”
and “[I”. Parentheses may be used (rule (9): e + (el)) to
enforce different priorities, or stress the predefined ones.
“PROC” and “END” are keywords.

The event identifiers (rule (5) e + Event-Id) are of the
form “IdentifierP1acet’ where “Identifier” represents a
primitive service interaction with the user of the service at
a given service access point, and “Place” characterizes that
service access point. In the following we use “Places” in
the form of integer numbers and single characters to
represent the interactions. For example, the event a2
represents the service interaction “a” at the service access
point “2”.

Compared to [Gotz 891, the definition of several procedures
(rules (1) through (3)) as well as the statement calling the
execution of a procedure (rule (4)) are the extensions which
make it possible to define infinite behaviors, such as the
following example:

Example 1:

Service specification :
PROC A = (a1 Ill b2 Ill c3) : B END
PROC B = (e3 Ill (c3 [] d3)) ; A END

The service is defined by the behavior of the first procedure,
procedure “A” in this example. The behavior of these
procedures is described below :

PrdureA:
The interaction primitives al, b2 and c3 are executed
independently (with interleaving) at the places 1,2 and 3,
respectively. When the execution of these primitives is
finished, the behavior is as specified for procedure B.

ProcedureB:
First, the interaction primitive e3 is executed at place 3 in
interleaving with the primitive c3 or d3 (the choice
between the interaction primitives c3 and d3 is done at
place 3). Then the behavior is as specified for procedure A.

At the abstraction level of the service specification, only
the interactions with the service user are defined. At the
more detailed level of protocol specifications, in addition
the exchange of messages between the protocol entities
must be specified. These messages serve for
synchronization in order to ensure the correct ordering of
the service interactions, as well as for the transfer of
information about interaction parameters which are
exchanged with the users of the service. The purpose of the
protocol derivation algorithm is to determine the order of
message exchanges and service interactions to be executed
by each of the protocol entities. This paper concentrates on
the synchronization messages; issues related to interaction
parameters and required messages are discussed in detail in
[Gotz 891.

The resulting protocol specifications are written in the
same language as the service specification, except that
addition primitives for the exchange of protocol messages

138

are introduced. We write “sj(m)” for the sending of a
synchronization message m to the protocol entity at place
j. If this statement is executed by the protocol entity at
place i, then the protocol entity at place j may later execute
the statement “ri(m)“, which represents the reception of the
message m from the entity at place i.

The following restrictions are imposed on the form of
service specifications, in order to simplify the protocol
derivation. For each subcxpression of the form “el [] e2”,
contained in the service specification, the following
conditions must be satisfied:

Rl: All starting interactions of el and all starting
interactions of e2 must be associated with the same place.

R2: The set of ending interaction places of el and the set
of ending interaction places of e2 must be equal, unless one
of these is empty.

Restriction Rl was already introduced in [Both 86g]. It
simplifies the implementation of the decision which
alternative should be selected. Instead of using a distributed
algorithm for this selection (e.g. [Rana 83 I), the choice can
be made locally by the protocol entity at the place where
the alternatives start. Restriction R2 is the basis for the
simplification of the derivation algorithm (see below).

The restrictions Rl and R2 can be eliminated from the
specification language by introducing a preliminary step in
the protocol derivation process. During this step, a
“starting” and “ending” places are selected for each
subexpression of the form “eI [] g”, and some dummy
interactions at these places are added at the beginning and
end of each of the alternatives, if the existing interactions
are not associated with the right places.

2.2. The basis for the simplification of the
algorithm

The basic idea of the protocol derivation algorithm [Both
86g] is the observation that the exchange of
synchronization messages is only required for the
sequencing operator “;“. In fact, the subexpressions eI and
e2 of an expression “eI ; e2” may involve service
interactions at different places. It is important that the
interactions belonging to e2 do not start before all
interactions belonging to eI have been executed. This
synchronization can be obtained by sending
synchronization messages from the places where
interactions of el are executed to those places where
interactions of e2 are to be executed. In the case of the
operator “el III e2” the subexpressions el and e2 arc
executed in parallel and independently from one another; no
synchronization is required.

In order to determine which synchronization messages must
he exchanged for an expression “eI ; e2”, it is necessary to
know the places where the last interactions of eI are
executed, and where the first interactions of e2 are executed.
For each subexpression e in the service specification, we
call these sets EP(e), the set of ending places, and SP(e),
the set of starting places of the subexpression. As shown
in Figure 3, these sets can be associated as attributes with
the nodes of the syntax tree of a given service specification.
As the figure suggests, synchronization messages must be
sent from all places of EP(e1) to all places of SP(e2).

In the case of service specifications satisfying the
restrictions Rl and R2, the sets EP and SP may contain
more than one place only when the parallel operator “Ill” is
involved in the expression. The set SP for an alternate
expression of the form “el [J g” contain only a single
place, due to restriction Rl, while the set EP may contain
more than one place if the operator “III” is involved. With
the restriction R2, no distinction must be made whether
several places in that set are due to parallelism or
alternatives. This distinction makes the protocol derivation
algorithm described in [Both 86g] and [Gotz 891 much
more complicated than the one presented here.

Another difference of the derivation algorithm leads to more
optimized protocol specifications. While the earlier
algorithm foresees synchronization messages sent between
the “ending events of el” and the “starting events of e2” for
each sequential subexpression of the form “el ; e2”. the
here described algorithm foresees synchronization messages
at a higher level in the syntax tree, passed directly between
“subcxprcssion eI” and “subexpression e2” (see Figure 3).
This is possible because of restriction R2 above. As shown
in Section 3, this can lead to an important reduction of the
number of exchanged messages.

II 8
I I ’ 81’

, . .
Figure 3

2.3. Attributes evaluation

The first phase of the protocol derivation algorithm is the
evaluation of attributes defined on the derivation tree of the
given service specification. The following attributes are
associated with each expression node e in the syntax tree:

139

SP(e): the set of “starting places” as described above.

EP(e): the set of “ending places” as described above.

P(e): either NIL or a pair < PP, N > where PP is the set of
“preceding” places, that is, the set of “ending places” EP of
the subexpression “preceding” the expression e; and N is
the number of the expression node which directly precedes
the I’;” operator in the service expression. This number is
included in the synchronization messages and permits the
receiving protocol entity to determine to which alternative
a received message belongs [Both 86g].

FP(e): the set of ‘following places”, similar to the
“preceding places” PP of the P attribute above.

The rules for evaluating the attributes of a node in the
syntax tree depend on the syntactic rule applied at that
node, as defined in the Table 1. The evaluation of the
attributes can be considered in two phases. In the first
phase, the attributes SP and EP are evaluated from to
bottom towards the top of the tree (so-called synthesized
attributes). For the leaf nodes generated by the rule (5)
(e + Event-Id) the attributes SP and EP are both set to the
value (place(Event-Id)) . Here “place” is a function from the
set of events to the set of places: place(IdentifierP) = p. In
the second phase, the attributes P and FP are first set,
respectively, to NIL and () at the root of each subtree
corresponding to a behavior expression of a procedure (see
rules (2) and (3)), then evaluated from the top down (so-
called inherited attributes) for the intermediate nodes, using
the values for SP and EP obtained during the first phase
(= de (6)).

Prndurtinn rules - _ ----_---- - -_--
(1) service-Def * Proc-Def
(2) Pmc-Def -+ PROC Proc-Id = e END Proc-Defl

g
Proc-Def + PROC Proc-Id = e END

e + I&-Id

8
e 3 Event-Id
e + el;e2

2
e 3 el III e2
e + ei [I e2

(9) e + (W
SP EP

g
SP(Proc-Id) := SP(e) EP(Proc-Id) := EP(e)
SP(Proc-Id) := SP(e) EP(Proc-Id) := EP(e)

(4 SP(e) := SP(Proc-Id) EP(e) := EP(Proc-Id)
0 SP(e) := SP(Event-Id) EP(e) := EP(Event-Id)

(6) We) := SP(e1) We) := EP(e2)

$
SP(e) := SP(e1) u SP(e2) EP(e) := EP(eI) u EP(e2)
SP(e) := SP(e1) = SP(e2) EP(e) := EP(e1) u EP(e2)

(9) SP(e) := SP(e1) EP(e) := EP(e1)
P FP

(2) P(e) := NIL FP(e) := ()
(3) P(e) := NIL IF(e) := (1
(4) P(Proc-Id) := NIL FP(Proc-Id) := ()
0 P(Event-Id) := NIL FP(Event-Id) := ()

(6) Wx) := NIL FP(ei) := SP(e2)
P(e2) := <EP(el), N(el)> FP(e2) := {}

:
P(e1) = P(e2) := NIL FP(el) = FP(ez) := ()
P(e1) = P(e2) := NIL FP(el) = FP(e2) := ()

(91 P(e1) := NIL Fp(ei) := 0

Table 1: Evaluation rules for the attributes SP, EP, P, FP

140

The above attribute evaluation rules are similar to those of
[Both 86g], however, the following differences can be
noted. The attributes above are essentially sets of places
with a straightforward meaning, while the attributes in
[Both 86g] represent statements for the sending and
receiving of synchronization messages and which must
satisfy certain syntactic properties. Effective values for the
attributes P and FP are only used in relation with the
sequential composition operator. The most important
difference is the presence of recursive procedure calls which
requires an iterative solution to the evaluation of the
attributes during the first phase.

The attributes SP and EP of a leaf node corresponding to a
procedure call (generated by rule (4)) can be considered
variables. We equate the values of these attributes for a call
of a particular procedure A with the attributes obtained for
the node representing the definition of this procedure A,
that is, the root of the subtree starting with the expression
e generated by rule (2) or (3) with the value of Proc-Id
equal to A. Therefore, the evaluation rules for SP applied
to a given procedure subtree, give rise to an equation
defining SP for that procedure in terms of constant places
corresponding to the explicit events defined in that
procedure, and in terms of variables representing the SP
values of those procedures which are called; and similarly
for EP. These equations, which are recursive in general, can
be solved by applying the rule that the equation SP(A) :=
SP(A) u X implies the equation SP(A):=X, where SP(A) is
the value of the SP attribute for procedure identified by A.

Another way of solving the recursive equations is by
iteration. The bottom-up attribute evaluation pass over the
procedure subtrees is performed several times, each
representing a step of the iteration, For the first step, the
values of the SP and EP attributes of the procedure call leaf
nodes are set to the empty set. In each subsequent step, the
values of these attributes are set equal to the corresponding
values obtained at the procedure root nodes in the previous
step. The iteration terminates when the attribute values of
all procedure root nodes have not changed during the last
step.

Based on the attributes SP and EP, we can now formally
define the restrictions Rl and R2 for the rule (8)
(e -3 el [I e2 1 :

Rl : SP(e1) = SP(e2) = (p} , where p is an arbitrary place
R2 : EP(e1) = EP(e2) or (EP(e1) = () or EP(e2) = ())

For Example 1 described in section 2.1, the behavior of
each procedure is described by a syntax subtree as is shown
Figure 4. The application of the rules described in Table 1
leads to the values shown in the figure. Some of the
attributes involve the variables SP(A), SP(B). EP(A) and
EP(B). In order to determine these variables, we proceed as
follows. The evaluation rule for SP at the root node of the
A subtree reads SP(A) := SP(e) and by inspecting this

subtree we see that SP(e) is equal to (1, 2, 3). Therefore
SP(A) = (1, 2, 3). Similarly, we get EP(A) := EP(B),
SP(B) = (3) and EP(l3) := EP(A). Finally, this leads to the
equation El?(A) := EP(A). which can be written
EP(A) := EP(A) u (), and therefore we set EP(A) = ().

These are obviously the values we were expecting, because
the two procedures A and B do not terminate.

PROC A =
(1,2,3) NIL

END
e

EP(B) 1 0

SP(B) NlL

B

EP(B) 11 I)

Figure 4(a): Syntactic tree of the procedure A

NIL
PROC B =

(3) END
e

ENA) 12 0

I3) NJL SWA) <(3),13>

e1 e2

(3) 13 SP(A) EP(A) 21 (1

‘11,
‘I,(I I. I

I
I
Sf’(A) NIL

Figure 4(b): Syntactic tree of the procedure B

141

2.4. Protocol derivation

Once the attributes are evaluated, they are used to derive the
specifications of the protocol entities as follows. For each
service access point, identified by the place p, the
specification of the protocol entity at that place is obtained
by applying the function Tp, defined in Table 2, to the root
node of the service specification. The result is a character
string in the form of a specification containing a set of
procedures with the same identifies as in the original
service specification, however, the definition of their bodies
is changed. Only the service interactions occurring at the
place for which the protocol entity is derived will be
included in the protocol specification (see rule (5)). and
additional statements for the sending and receiving
synchronization messages will be included (see rule (6)).
The string “empty” represents no action and can be
eliminated using the rules described in [Both 86g].

The functions trans and ret are used to obtain statements
for the sending and receiving of synchronization messages
from the set of “following” and “preceding” places,
respectively. They are defined as follows:

ret (NIL) = “empty”
ret (<(i, j, k), N>) = “(ri(N) III rj(N> Ill . . . Ill Q(N) >”

tram ((} , N) = “empty”
tram ((i, j, k], N) = “(Si(N) Ill Sj(N) Ill . . . Ill Sk(N))”

Prnflrirtinn rrrlm - - ..III--uy -w-v..
Service-Def + F%uc-Def

Proc-Def + PROC Proc-Id = e END Proc-Defl
Proc-Def + PROC Proc-Id = e END

e + Pmc-Id
e -3 Event-Id
e + ei ; e;!
e + el Ill e2
e * el II e2
e + (4

Function Tp
Tp(Service-Def) := Tp(Proc-Def)

Tp(Proc-Def) := “PROC” Proc-Id “=” Tp(e) “END” Tp(Proc-Defl)

Tp(Proc-Def) := “PROC” Proc-Id ‘I=” Tp(e) “END”

Tp(e) := Proc-Id

Tp(e) := if place(Event-Id) = p then Event-Id else “empty”

(6) ‘Me) := Tph) “;” if p E EP(e1) then trans(FP(el),N(el)) else “empty”

“:” if p E SP(e2) then rec(P(e2)) else “empty” “;” Tp(e2)

Tp(e) := Tp(eI) “III” Tp(g)

Tp(e) := TpW “0” TPW

Tp(e) := ‘I(,, Tp(e1) “)”

Table 2: Definition of the function Tp

142

Consider again Example 1 with the service specification:

PROC A = (a1 III b2 Ill ~3) ; B END
PROC B = (e3 Ill (c3 [I d3)) ; A END

This derivation algorithm leads to the following protocol
specification:

Protocol entity at place 1:
PROC A = a1 ; s3(2) ; B END
PROC B = r3(13) ; A END

Protocol entity at place 2:
PROC A = b2 ; ~(2) ; B END
PROC B = r3(13) ; A END

Protocol entity at place 3:
PROC A = c3 ; ~$2) -

B
i&W) 111 r2(2) 111 a(2) 1 ;

PROC B = (e3 Ill (c3 [I d3)) ;

3. Optimizations

Different kinds of optimizations lead to different protocol
designs depending on the performance objective to be
optimized. In the context of the here described protocols,
the following two objectives may be considered, as
illustrated in the example Bellow:

(1) Minimization of the number of synchronization
messages required for a typical execution of the service
specification. In fact, different executions should be
considered if the service specification allows for alternative
choices.

(2) Minimization of the maximal number of
synchronization messages transmitted in a sequential order
during a typical execution of the service specification.

The first objective minimizes the message transmission
“overhead”, while the second minimizes the overall delay
required for the execution of the service, assuming that the
delay is solely due to message transmission, and the delays
of all message transmissions are the same. In the following
we only consider the first optimization objective.

3.1. Elimination of loopback messages

Let consider the derived protocol specification for Example
1, in particular the protocol entity for the place 3 above.
One sees that the protocol specification includes

synchronization messages sent by the entity at place 3 to
itself. Clearly, such messages should be eliminated, since
they do not provide any synchronization function. (Note
that the sequencing relation is locally enforced by the “;”
operator which is included in the specification of the
entity).

This optimization is obtained by eliminating the place p of
the entity to be generated, from the sets of places used for
the generation of sending and receiving statements. More
precisely, the expressions “ret (P(e2))” and “trans(FP(el),
N(e1))” in Table 2 (rule (6)) should be replaced by “ret
(P’(e2))” and “trans(FP’(eI), N(el))l. respectively, where P
and FP’ are defined as follows:

P’(e) = NIL if P(e) = NIL
P’(e) = c Set - {p) , N > if P(e) = c Set, N >

In the case of Example 1 above, this modification leads to
the specification :

PROC A = c3 ; (q(2) Ill r2(2)) ; B END

PROC B = (e3 Ill (c3 [I d3)) ;
(~103) 111 s2(13) 1 ;
A END

for the protocol entity at place 3, which exhibits no useless
transmissions, while the specifications for the others
entities are not changed.

3.2. Other optimizatbns

As mentioned in Section 2.2, the derivation algorithm
presented here gives rise to more optimized protocol
specifications than the previous algorithm [Both 86g]. The
difference becomes visible for service specifications such as
the following:

Example 2:
PROC A = (a1 Ill b1) : (c2 Ill d2) END

The algorithm of [Both 86g] gives rise to four
synchronization messages, as indicated in Figure 5(a). An
optimization described in Khen 891 reduces this number to
two, as shown in Figure 5(b). Note that this optimization
is also applicable in the case that restriction R2 is not
satisfied. For the simplified derivation algorithm described
in this paper (which requires restriction R2) the resulting
protocol includes only a single synchronization message,
as indicated in Figure 5(c). As indicated in the figure, the
message relates the higher nodes of the syntax tree, instead
of the leaf nodes, as is the case of the earlier algorithm.
This is the reason for the optimization.

143

Figure 5(c)

Figure S(a)
When interaction parameters are taken into account, another
optimization may be performed [Khen 891. In this case,
instead of sending a synchronization message and a data
message together from the place pl to the place ~2, the
synchronization message may be eliminated and the
protocol entity at place pl has to send just the data
message to place ~2. This data message will also serve for
synchronization.

4. Conclusions

This paper considers the automatic derivation of a protocol
specification from a given service specification. The derived
protocol automatically satisfies the usual “nice properties”,
such as absence of deadlocks, unspecified receptions, etc. In
addition, it provides the service interactions at the different
service access points in the order specified by the given
service specification. The necessary synchronization
messages between the different protocol entities are
determined automatically.

Figure 5(b)

The paper presents a simplified derivation algorithm, which
is much easier to understand than an earlier one [Both 86g].
In addition, it provides protocol specifications which are
better optimized. Another important different is the
extension of the algorithm to handle service specifications
with loops and recursive procedure calls. Together with the
other operators “;” (sequential execution), “[I”
(alternatives), and “111” (independent parallelism), this
allows for a language power similar to Lotos or CCS
[Miln 801.

144

The inclusion of interaction parameters in the context of
the earlier derivation algorithm is discussed in [Gotz 891. It
involves additional messages exchanged between the
protocol entities for the transmission of interaction
parameters. The same approach can be used for handling
interaction parameters in the context of the here described
derivation algorithm.

The protocol derivation algorithm assumes that the
underlying communication is reliable. This assumption is
usually satisfied for protocols above the level of the OS1
Transport protocol. We believe that this algorithm could be
useful for automating the design of application protocols,
in a context where the service specifications change
lteqllently.

For the case that the protocol should be reliable in the case
of message losses, it is conceivable to use an approach
where the protocol for the reliable case is systematically
transformed into a protocol that recovers from message
loss. We think that it may be possible to adapt the
approach of [Rama 86] to the here described context. More
research is still required to work out the details.

References

[Both 86gl BOCHMANN, G.v. and GOTZHEIN, R.
Deriving protocol specifications from service
specifications. in: Communications, Architectures &
Protocols, Proceedings of the ACM SIGCOMM ‘86
Symposium, Vermont, USA, 1986.

[Both 87~1 BOCHMANN, G.v. Usage of protocol
development tools : the result of a survey. 7-th IFIP
Symposium on Protocol Specification, Testing and
Verification, Zurich, May 1987.

[Bole 871 BOLOGNESI, T. and BRINKSMA, E.
Introduction to the IS0 Specification Language Lotos.
Computer Networks and ISDN Systems, vol. 14, no.1, pp.
3- , 1987.

[Chu 88a] CHU, P.M. and LIU, M.T. Synthesizing
Protocol specifications from service specification in FSM
Model. in Proc. Computer Networking Symp.B8,pp 173-
82,April 1988.

[Chu 88b] CHU, P. M. and LIU, M.T. Protocol Synthesis
in a State Transition Model. in Proceedings IEEE
COMPSAC ’ 88, pp. 505-512.

[GoYu 841 GOUDA, M. and YU, Y. Synthesis of
communicating finite-state machines with guaranteed
progress. IEEE Transactions on Communications, COM-
32, No.7, July 1984, pp.779-788

[Gotz 891 GOTZHEIN, R. and BOCHMANN G.v.
Deriving protocol specifications from service specifications
including parameters. to be published in ACM TOPLAS .

[Khen 891 K HE N DE K , F . Derivation de protocoles a
partir de services de communication &its dans un sous-
ensemble de LOTOS. M.Sc. Thesis, Universite de
Montrt%& 1989.

[MeBo 831 MERLIN, P. and BOCHMANN, G.v. On the
construction of submodule specifications and
communication protocols. ACM Trans. on Programming
Languages and Systems, No.1, Jan.1983, pp.l-25

[Miln 801 MILNER,R. A calculus of communicating
systems. Lecture Notes in Computer Science 92, Springer-
Verlag, Berlin 1980, 17 lp.

[Rama 851 RAMAMOORTHY, C.V., DONG, S .T.,
USUDA,Y. An Implementation of an Automated Protocol
Synthesizer (APS) and its Application to the X.21
Protocol. IEEE Transactions on Software Engineering,
Vol. SE-11, No.9, Sept.1985, pp. 886-908

[Rama 861 RAMAMOORTHY, C.V., YAW, Y .,
AGGARWAL, R., SONG, J. Synthesis of Two-Party
Error-Recoverable Protocols. in: Communications,
Architectures & Protocols, Proceedings of the ACM
SIGCOMM ‘86 Symposium, Vermont, USA, 1986, pp.
227-235.

lRana 831 RANA, S. P. A Distributed Solution of the
Distributed Termination Problem. Information Processing
Letters 17, 1983, pp. 43-46.

[ViLo 851 VISSERS, C.A. and LOGRIPPO, L. The
importance of the service concept in the design of data
communications protocols. in: M. Diaz (ed.), Protocol
Specification, Testing, and Verification, V, Proc. of the
IFIP WG 6.1 Workshop, Toulouse-Moissac, France, June
lo-13,1985, North-Holland, Amsterdam 1986, pp. 3-17.

[Zafi 801 ZAFIROPULO, P., WEST, C.H., RUDIN, H..
COWAN, D.D. and BRAND, D. Towards analyzing and
synthesizing protocols. IEEE Transactions on
Communications, Vol. COM-28, No.4, April 1980,
pp.651-661.

145

